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Correlation Functions of the 
Critical Ashkin-Teller Model on a Torus 
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The correlation functions of the critical Ashkin-Teller model on a torus are 
calculated using a free bosonic field formulation in the cont inuum limit. The 
results include in particular correlators of electromagnetic or twist operators. 
Various applications are discussed. 
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1. I N T R O D U C T I O N  

Much work has been devoted recently to the study of the partition 
functions of 2D critical systems on a torus. (~) For instance, the constraint 
of modular invariance has allowed a systematic classification (2 5) of all 
minimal (6) conformal theories with central charge c < 1, determining their 
full operator content. Also, free field constructions involving various types 
of topological defects have been proposed, (7 lo) establishing links with the 
standard Coulomb gas mappings of statistical mechanics (H) as well as with 
recent developments in string theory. ~12) 

The correlation functions on the torus are also of interest, in particular 
because they provide a systematic route to the study of deviations from 
criticality. ~13) Their construction appears, however, technically difficult, and 
only the Ising model has been considered. (14) My purpose in this work is to 
extend the analysis of Ref. 14 to the whole critical line of the Ashkin Teller 
(AT) model/15) including, in particular, the Kosterlitz-Thouless, the Z4, ~6) 
and the four-state Potts model points. The corresponding problem on the 
plane has been considered in Ref. 17. It turns out that some of the present 
results are also useful from the point of view of string theory on 
orbifolds.(~8) 
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The paper is organized as follows. Section 2 recalls the free field 
mapping (1'''9) of the AT model, which will be the central instrument of the 
present approach. I discuss the way physical operators translate (19) into 
"electromagnetic" or "twist" fields and rederive the partition function (9''~ 
on the toms. Section 3 calculates the n-point correlation functions for elec- 
tromagnetic operators, and illustrates the resuts with various examples, 
such as the underlying Luttinger model fermions (2~ or the energy. Sec- 
tion 4 considers the 2n twist-functions with application to order parameter 
correlators. (17) Section5 discusses the compatibility of the results with 
those derived by other approaches using covering Riemann surfaces. (2'~ 
Section 6 contains a few final comments. 

2. FREE FIELD F O R M U L A T I O N  
OF T H E  A S H K I N - T E L L E R  M O D E L  

1. The AT model ('5) consists of two Ising models coupled by a four 
spin interaction, with action 

sur ~ K2(SjSk + (jtk)+ K4SjSkt]tk (2.1) 
(jk > 

where ( jk} denotes nearest neighbors of the square lattice ~q~, and S, 
t= • i. As shown by various authors, ('') model (2.1) at criticality can be 
reformulated as a solid-on-solid (SOS) surface model, and then mapped 
onto a free field. First it is convenient to rewrite (2. I) (using the invariance 
of the partition function Z AT under t-~ St') as 

~r - ~ K2SjSk(1 + tjt'k)+ Katjt'k (2.2) 
<jk > 

and Z AT reads 

zAT= ~ H [-exp (Kntjt'k)] ch(K2+K2tjt'k) 
{S,t'} <jk> 

• I1 + SjSk th(K2 + K2tjt'k)] (2.3) 

The {t'} configuration can be represented by putting bonds on the dual 
lattice 9 ,  which separate two sites with opposite t', as in an Ising low-tem- 
perature expansion. The product of square brackets can then be expanded 
as in an Ising high-temperature expansion with a bond on 5e each time the 
SjSk term is taken. Summation over {S, t'} gives 

. . . .  t fexp( - 2K4)'~ d 
zAX=2X[exp(ZJVK4)](chZK2) 2~ Z ( thz~2)~-  ch2-~2 /J (2.4) 

graphs 
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where J /  is the total number of sites. The graphs are formed by polygons 
on 5~ and ~ with an even number of bonds attached to any point, the total 
numbers of bonds on each lattice being respectively I and d. If a given bond 
is present on N, the product of the two corresponding spins is - 1 and the 
th in (2.3) is zero; thus, the polygons on L,f and ~ do not intersect (Fig. 1). 
The model presents a critical line given by the self-duality condition 
exp ( -2K4)  = sh 2K2, which terminates at coth 2K 2 = 2. 

The graphs of (2.4) can alternatively be represented by six-vertex 
(Fig. 2) configurations on the surrounding lattice 5 p, here another square 
lattice the vertices of which are the midpoints of the edges of ~ .  A bond on 
Lf or N is associated to a vertex of type 1 ..... 4, such that arrows are 
reflected by it, with a net nonzero polarization. Edges with no bond are 
associated to vertices of type 5, 6. Once a possible vertex is chosen, the 
whole correspondence follows by induction. A given configuration of bonds 
is thus associated with a configuration of the six-vertex model (defined up 
to a reversal of all arrows) and vice versa. Along the critical line this six- 
vertex model becomes in fact an F-model with Boltzmann weights 

W1 . . . . .  W 4 = 1, W5 = W6 = coth 2/s (2.5) 

Now the F-model can be transformed into an SOS moel by introducing 
height variables ~0 on the faces of 5P, such that two neighbouring q) differ 
by _+~/2, the highest being on the left of each arrow. It is finally argued 
that this SOS model renormalizes m) onto a Gaussian model with the free 
field action 

sr = g  f IVq~[ 2 d2x (2.6) 
4re 

�9 ) 

�9 ). 

Fig. 1. A graph in the expansion (2.4) involving a polygon on ~o (whose sites are indicated 
by dotted points) and a polygon on @. The corresponding six-vertex configuration is 
indicated. 
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Fig. 2. Arrow configurations in the six-vertex model. Vertices of type 1,..., 4 are associated to 
bonds on 5 ~ or ~, vertices of type 5, 6 to edges with no bonds. Additional vertices of type 7, 8 
correspond to introducing magnetic operators in the surface language. 

Many operators in (2.1) translate then in the Gaussian language into 
combinations of spin wave ("electric") operators OE, i.e., exponentials of 
the field e me, and vortex ("magnetic") operators OM, which create a 
branch point with amplitude discontinuity of 2~M for the field q) (in the 
following we call E and M, respectively, electric and magnetic charges). 
Their dimensions and spin are (m 

XEM = E2/2g + gM2/2 

S eM = EM 
(2.7) 

Of particular interest is the operator O0,+~, which describes the introduc- 
tion of a vertex of type 7, 8 (Fig. 2). From the solution of the eight-vertex 
model, one knows the singularity of the free energy in the neighborhood of 

I wT[ = 0, 

f ~ l W v ]  2/y, y = ( 4 / ~ ) c o s  l ( W s / 2 ) = 2 - x  (2.8) 

from which one deduces via (2.5) and (2.7) 

8 sin-~ ( c~ ) (2.9) 
g 7z 

In a similar way the energy is known (19) to be e ~ 0 2 ,  0 (X-  T = 2/g) and 
the polarization operator (P=St)  P+--~ 0~,o. The special points of the AT 
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line can then be identified(9): g = 1 corresponds to the Kosterlitz Thouless 
point, g = 2  to the decoupling (Ising) point, g =  3 to the Z4 model of 
Ref. 16, and g = 4 the four-state Potts model. 

The identification of the spin operator is of a different nature. It has 
been conjectured ~22) for a long time that the magnetic exponent XH remains 
constant along the critical line with the Ising value X H =  1/8. Several 
authors have noticed ~ that this feature is characteristic of the twist 
operator a, which create a branch point singularity with change of sign of 
the field ~0. The correspondence S ~ a can in fact be established using the 
above model transformation, as shown in a slightly different way in Ref. 10. 
The two-spin correlation function (SjSk) is represented in the graph 
expansion (2.4) by adding a line on 5 ~ connecting j to k. Now, the six- 
vertex representation cannot be consistently achieved. Indeed, suppose we 
follow a curve encircling j or k; then, defining recurrently the arrow con- 
figurations, one comes back to reversed orientations, since an odd number 
of lines on ~ is crossed (Fig. 3). The new graphs thus correspond to 
antiperiodicity of the six-vertex model along a cut relating j to k. The 
heights being multiple of ~/2, and a crossed line corresponding to a step of 
~, it is always possible to choose the origins such that this cut corresponds 
in turn to a change of sign of q~, establishing the desired result. This is also 
valid for (tjtk). 

Higher order correlation functions are slightly more complicated, as 
we illustrate now for (SjSkStSm). There is first a change of sign ~0 ~ -q~ 

k �9 

Fig. 3. For a graph in the expansion of (SjSk), the six-vertex representation cannot be 
defined in a coherent way. Following a closed path encircling j or k and defining recurrently 
the arrow configurations, one comes back to reversed orientations (double arrows on the 
figure). This is equivalent to antiperiodic conditions for the vertex model along a cut (wavy 
line) relating j to k, and also to antiperiodicity for the heights (p. 
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encircling any of the points, as was the case for (SjSk) ,  resulting now in 
two cuts on the plane. In addition, the heights cannot be consistently 
defined on closed paths cg encircling two points, although the vertex con- 
figurations can. Depending on the number of polygons between the points, 
the cg and spin line configurations, the height varies in fact by an amount 
of 2ran, m ~ 7/, since the number of crossed bonds along c~ is always even 
(m = 1 in Fig. 4). For  the four-point function there are two independent 
contours, one possibility of which is represented Fig. 4b (for the 2n-point 
function, there would be 2 n -  2 such contours) and the correlation function 
is obtained by summing over "frustrations" rn~, rn2; see Section 4. We can 
also obtain mixed correlators such as (SjtkStt,~), which becomes in the 

S t ! t / variables of the graph expansion ( j S k S l S m t k t m ) .  The tkt m is negative if 
there is an even number of @ polygons between k and m, which translates 
into ml = 2n + 1 in terms of height variations, and the correlation function 
is obtained by summing over ml,  m2 with an additional factor (-)m~. This 
construction appears rather similar to the one used for correlators in string 
theory on orbifolds and explains the similarity between the results of 
Refs. 7 and 18. 

An alternative field-theoretic description of the AT model is provided 
by the Luttinger (massless Thirring) model, i.e., the interacting complex 
fermion theory with action 

dd = f (0 0et~ + + ~ ~z~ + + Ft~l + ~ +) d2x (2.10) 

The relations between the two formulations have been studied in detail/2~ 
Recall simply that F= ( 2 -  g)/(2 + g) and the equivalences ~ O ~ , 1 / 2 ;  

- *  0 

At the value g = 3, the AT model reduces to the Z4 model of Ref. 16. 
The corresponding quarter-integer-spin parafermions z, x + are identified (9) 

a s  Z ~ O3/2,1/2 ; Z + ~ O 3/2,-  1/2(X ~ O_3/2,1/2 ; ~ + ~ 03/2,  1/2), 

2. So far we have discussed the AT model on an infinite plane. In a 
finite geometry, the boundary conditions generate various constraints on 
the successive transformations described above, resulting in a modified free 
field theory as discussed in detail in Ref. 10. The first point is that an asym- 
metry between 5e and ~ appears on a torus. Indeed, since a @ line 
corresponds to a t spin flip, any closed path has to cross an even number of 

bonds, while the number of G.qo crossed bonds can be arbitrary. If these 
numbers are both even, the reformulation as an F-model is still possible. 
Now, since height variables rp are associated locally to a vertex con- 
figuration, they cannot be defined in a consistent way; describing a noncon- 
tractible loop around the torus leads (7'8) to a variation of height &p which, 



Corre la t ion  Funct ions on a Torus 481 
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Fig. 4. A new feature appears in the construction of higher spin correlators, as illustrated 
here in the case of (SjSkSISm), In addition to the cuts with change of sign of q9, the height 
cannot be consistently defined on curves encircling two points, a l though the six-vertex 
configurations can: there is indeed a variation of q~ multiple of 2n: 6q~ = + 2n for the contour  
cg on part (a). The four-point spin function is obtained by summing  over indices m~, m 2 E 
characterizing these frustrations for a set of two independent contours,  an example of which is 
given in part (b). 
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due to the condition of an even number of crossed bonds, is a multiple of 
2~ We describe the torus by two periods co, co'. Then, for a variation 6q)= 
2rcm, 6'q~ = 2~zm' along the two generators, the corresponding continuum 
limit is the frustrated partition function introduced in Ref. 7, 

Zmm,=~ [D~o] e - d  (2.11) 
J6 ,.p = 2rtm 

6'r = 2r~m' 

This is easily evaluated writing ~0--. q~ + (Pcl, where ~p is now periodic 
and the "classical" part (such that A~0ol = 0) is given by 

~~ I / (2.12) 

Then Zmm, factorizes a s  Zmm, = Z 0 exp(-SCcl), where Z0 is the "quantum" 
contribution, i.e., the partition function of the periodic free field (v) 

( g ~ 1 / 2 1  
Z o = --  (2.13) 

\"CI / Ir/(q)l 2 

and the classical action reads 

~cl : ~ I Vq)cl {2 d 2 x  = rcg 

Thus, 

Im' - mTI 2 
(2.14) 

TI 

( g )  1/2 l ( I m ' - m z l 2 ]  
Zm.,,= - exp - ~ g  

' , q /  Ir/(q)l 2 "q / 
(2.15) 

In these expressions we have used the modular ratio r = co'/co = "~R + izI, 
and r/is the Dedekind function 

tl(q)=q 1/24 f i  ( l - q " ) ,  q=e 2i~T 
n=l 

Summing over these "soliton" sectors indexed by m, rn' gives the Coulom- 
bic partition function, (7'91 

1 
Z c ( g ) =  ~ Zmm' ~ qhem~hem (2.16) 

mm' ~Z : ~-'~ emcZ 

(the last equality is obtained by a Poisson transformation on m'). The 
q ~ 0 behavior Z ~ (q~)-c/24 gives the central charge c = 1, and the confor- 
real weights (6) (x = h + h, s = h - h) are derived from (2.7), 

I ( ~ g g  ~ ) 2  h e m - - 1 4 ( - ~  x / g )  2 hem=- ~ +m , - -  +m (2.17) 
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Formula (2.16) appears also in the context of string theory as the partition 
function of a free field compactified on a circle. In the usual conventions, {~2) 
where the action is 

and ~o is defined modulo 2~R, the correspondence is given by R = (2g) 1/2. 
To construct the partition function of the AT model, one must add the 

contribution of graphs where an odd number of ~ bonds is crossed. By the 
same arguments leading to the identification of the spin as a twist operator, 
this condition translates with a correct choice of the height origins into 
antiperiodic boundary conditions for the field ~o. Defining for (~fi)r (00) 

Z(~)=~(z+~o l)-ei,=~o(z) [Dq~] e - 'u  
- " z q~(z + "c) e2mpcp( ) 

which have been calculated in Ref. 24, 

Z(,/2,o) = Iq/04(O)l 

Z ( o , 1 / 2 )  ~--- Id02(O) l  

2(1/2,1/2) ~-1'7/03(0)I 

(2.18) 

(2.19) 

(here 0v denotes 
finally{ 9,1~ 

The sum 

the Jacobi theta function of argument ~(25)) one gets 

AT 1 ~ &  
Z = ~ Z c ( g )  + v= 2 

the twisted sectors is also modular 

(2.20) 

over invariant. The 
relative normalization between the two contributions is not directly 
obtained by this approach, since there is a zero mode subtraction in the 
Coulombic sector only. It can be fixed by requiring the identity (spin) 
operators to be non (twice) degenerate. At the Ising decoupling point g = 2 
one checks that 

where 

z A T (  g = 2)  = ( Z I )  2 (2.21) 

z,=l  ~176 1222, 
2 v = 2  - -  
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Formula (2.22) is the partition function of the Ising model, i.e., a free real 
fermion theory with action 

(2.23) 

summed over four sectors of periodic (antiperiodic) boundary conditions 
for (6, ~). The result (2.20) appears also in string theory as the partition 
function of a Z2-orbifold model. (9) 

3. Finally we recall the existence for the model (2.6) of a duality 
transformation with the effect (19) 

g--* l/g 

OEM ~ OME (2.24) 

O" ---* O" 

This leaves the twisted partition functions invariant, as well as the Coulom- 
bic one due to (v) 

Zc(g)  = Zc(1/g) (2.25) 

3. SPIN W A V E  AND VORTEX OPERATORS 
CORRELATION FUNCTIONS 

1. We first consider (OEM(Zl,2I)O--E, M(Z2, Z2)) in the doubly 
periodic sector. To take into account the discontinuity of 2~M on a cut 
relating 1 to 2 (Fig. 5a), we introduce the classical field 

~o, = M {Im log I 0 ' ( z - - ~ ! ] -  2~ Rez12 } (3.1 LOl(z- Z2)~ "CI Im z ) 

It is doubly periodic, singular in Zl, z2, and satisfies dcpc= = 0 otherwise. 
Then, writing ~o -* qo + ~0ol, the calculation of the functional integral gives, 
as in (2.12), 

(o M(1) o 

oc exp iE[q~o~(1)-q~o~(2)] + E2(~o(1) ~o(2))pp-~-~ [V~0cl [2 d2x} 
(3.2) 
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"g > 

q~ = 2 g M  ) 1 

(a) 

(b) 

Fig, 5. (a) Magnetic operators create a cut with a discontinuity of 2nM for the field ~0. (b) 
Shifting one of the points by l, z, 1 + z is equivalent to wrapping a frustration line around the 
torus, and changes the soliton sector correspondingly. 

where the propagator <q)~O)pp has already been evaluated in Ref. 24, 

--8~ll~ 01(z12)0'1(0) e x p (  -~ImLz12'/lzl/3 <~(1) 

1 
- l o g  F(1 ,  2)  (3 .3)  

2g 

To obtain the remaining integral, we introduce the other field 

{ 01(z-z1) _2n Re zRe  zl~} (3.4) 
~bcl=M log 01(z-z2 zl 

We use Cauchy-Riemann relations to replace ~Pd by ~bc~, and perform then 
an integration by parts, which, due to 

A~)cl = 2nM[ f2(z - zi) - 62(z- z2)] (3.5) 
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(6 being understood as doubly periodic), gives finally 

(o~M(1) 0 ~ ,  M(2))p~ 
= 0 ~ ( 0 )  E2/g+~M2 

01(Z12) 

xexp --~i(EImz~2-igMRez~2)2-2iEMlog[Ol(z~2)]~ (3.6) 
L 01(o) j~ 

It will be useful to introduce 

i3.7  

with which (3.6) reads 

_ , "~ = [ < ( 0 )  ~ 2 ~ '  [ c c 1 2 ~ ,  ~ 
(OEM(1)O E-M(2).'pp lOl(Z,2)J 

x exp - - -  (6eMZ12 + 3eMs 2 (3.8) 

It is not the product of an analytic by an antianalytic function. If 
M r  it is not periodic, since shifting z12 by 1, r, or 1 + r is equivalent to 
adding a new frustration line wrapping around the torus (Fig. 5b). 

The corresponding expression in a soliton sector (m, m') is then easily 
obtained by adding (2.12) to the classical field (3.1), giving 

(OuM(1) O_u,_M(2))mm, 

= (OeM(1) O_u,_M(2))pp 

xexp[2ircEIm(m'~mgz12)+ertgMRe(m'~mfz12)]k "C I \ 72I 

= L0~(z~2)J [ 0i(0) ]2h~M [CC] 2h~M exp - - ~  (6eMz12 + 6E~212) 2 

+ 2nx/-g( m'~mg 6EMZ,2 -+ 
\ "~I 

and one can check that 

Zmm,(OEMO E,_M)mm,(ZI2 ~- 1) 

m'--mzr, 3eMZ12)] (3.9) 

= Zm,m'-M exp[2igE(m - M)](OEMO E_M)m,m,_M(Z12 ) 

Zmm'<O~MO_~_M>mm'(Z,~ + ~) 

=Z.,+M,m, eXp[2ircE(m'--M)](OEMO F., M)m+M,m'(Z12) 

(3.10a) 

(3.lOb) 
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The total correlation function in the Coulombic sector is 

1 
-- 2 Zmm'(OEM(l) O-E, M(Z))mm ' (OEM(1)O E, M(2))C Zc(g)mm, cZ ~ 

(3.11) 

Due to (3.10), it is periodic for E, M integers only. 

2. We now consider a twisted sector, for instance, (~, fl) = (1/2, 0). The 
classical field analogous to (3.1) then reads 

~Pd = M Im log [O~( ( z -  z 1)/2, 27/2) 02((z - z2)/2, r/2) 1 (3.12) 
L02((z - zl)/2, 27/2) O~((z---z2- ~ ,  27/2)J 

satisfying q~c~(z + 1 ) = - qod(z), q~c~(Z + 27) = ~od(z), and the propagator (~4/is 

1 F F(z12/2,_j_/2_) .] 
(~o(1) ~p(2))/,/zo/= - ~ g  log (3.13) 

LV((z~2 + 1)/2, 27/2)3 

Use of (3.2) gives in this case 

F 02(z,2/2, "if2) 0',(0, 27/2)] 2h~M 
(OEM(I)  OE,_M~'2"'),~ (1/2,0)= L ' 2 ~ ,  --72- ) 02(0, --7~ ~ [CC] ahEM 

(3.14) 

The results in the other sectors are obtained in a similar way and read 

(OEM(1) O--E,--M(2) )m,,/2) 

-04(Z12 227) 0'1(0 , 227)] zh~ 
- _O~(z~2, 2z) 04(0, 2--~J [cc]2a~' (3.15) 

and 

(OEM(1) O--E--M(2) }~1/2.,/2~ 

= [ 0 2 ( Z , 2 / 2 )  04(Z12/2) 01t0) 03(0)] 2hEM [CC]2~E,. 
LZO,(z12/2) 03(Zj2/2) 02(0)0--~J (3.16) 

One can give a more symmetric form to these results. Using the standard 
identities ~25) 
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01(z) : 201(z/2) 02(z/2) 03(z/2 ) 04(z/2 ) 
02(0) 03(0) 04(0) 

01(z/2)  02(z/2)  
Ol(Z , 2v)= 

04(0 , 2r) 

03(z/2)  04(-7/2) 04(z, 2r )=  (3.17) 
04(0 , 2T) 

2 1/2 
o ,z, o3,z, 

2 1/2 

and characterizing a twisted sector by the index v = 2,..., 4 through (2.19), 
one finds 

( OEM(I ) O_E_M(2))(~)e(o0)~v 

=~ 0~(0) ~I O~'(Z12/2!12heM [CC] 2heM (3.18) 
LO,(z12)v,=2 o~,(o) j 

V" .t~ V 

One can 
transformation properties 

( O E M  0 E__M)(O, 1/2)(Z12, 72) 

= Z122hEMz1-22hEM( OEM 0 _ E, -- M )(1/2,0)(Z12/T, -- 1/27) 

( O E M O  E,_M)(1/2,1/2)(Z12, T ) =  ( O E M O  E,_M)(1/2,0)(Z12, "( 7!- 1) 

3. The total correlation function is finally 

(Oeg(1)  O e._m(2)) 

= � 8 9  E,--M)C -]- E(~/~) ~ (00) Z(ct f l ) (OEMO e,--M)(~fl) 

check that formulas (3.14)-(3.16) satisfy appropriate modular 

(3.19a) 

(3.19b) 

(3.20) Z AT 

It is in general not periodic. Note that in (3.20), once the Z1-22hEm [-CC]--2fieM 
are factorized, all the remaining terms are integer powers of z12, s This is 
due to the fact that in the short-distance expansion only derivatives of the 
field r appear that have integer dimensions. 

We now discuss a few applications. As explained in Section 2, the case 
E = I  (resp. E = - 1 ) ,  M = � 8 9  corresponds to the fermions ~ ( ~ )  in the 
Luttinger model (2.10). They become analytic (resp. antianalytic) at g =  2, 
where the four fermion coupling F vanishes, and the AT model decouples 
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into two independent lsing (Za) models. In this case h~,~/2 = 1/2, /~,v2 = 0; 
thus, 

Zc 
T (ff/(Zl) ~/+(Z2))C 

1 0'd0) ( rc ~) 
- (2zl) 1/2 J~l 20l(z12) exp - ~ - i 2  

• ~ exp~2z~m'--m-----~rz12--2~lrn'~-nr}2 ] (3.21) 
ram' ~ ,~ [- 72I T I 

which is easily proven to be 

Z c  1 Oi(O) 
T (6(Zl)  O +(z2))c = 4 {q{2 01(z12 ) ~ 2  O~(O)O,,(ZI2) (3.22) 

using the definition of theta functions and the identity (4.19) of Ref. 14, In 
the sector (~fl)= (�89 0) one finds 

(~,(z,)  O + (z~))./zo~ -~ 

Using (3.17) and Ref. 25, 

this reads 

o~(z~d2, ~/2) 0',(0, ~/2) 

201(z12/2, r/2) 02(0, r/2) 

O~(z/2, r/2) - 02(z/2, r/2) 
02(z) = 

203(0) 

02(z/2, ~/2)+ O~(z/2, r/2) 
03(z) = - -  

202(0) 

0;(0) [02(z12).  G(z~2)7 
0 = ) 

(3.23) 

(3.24) 

(3.25) 

Modular transformation then gives similar results in the other sectors. 
Combining (3.22) and (3.25), one gets 

(~(z~) ~+(z : ) ) (z2)= G(0) Z~=2[{0v(0)l/0,,(0)] Ov(z~2) (3.26) 
O~(z~2) Z~=2 10v(o)s 

A comparison with (2.22) allows one to identify the fermion correlation 
function for the lsing model in a fermionic sector v, 

0;(0) 0,,(z,2) 
(q~(z~)~b+(z2))~I)=Odz12) 0v(0) ' v = 2  ..... 4 (3.27) 

in agreement with the result of direct calculations. (~4~ 
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In a similar way the point g =  3 corresponds to the Z 4 model of 
Ref. 16, for which quarter-integer-spin parafermions Z (01 in Ref. 16) are 
described by O3/2.1/2 with h3/2,1/2 = 3/4, h3/2,1/2 = 0. We thus get 

(z(z~) z+(z~)) ~Z4~ 

_ 1 ~0'1(0)~3/2{ 1 (3]1/2exp(_37Zz22" ~ 
zAT k ~ J  ~ \'t-'I/ \ 4"t'I // 

( m' -m~ Im'-m~l'~ 
x ~ exp 3re Zl2-3rc --- 

mm' e ~ "C I "C I J 

Irtl [03(z12/2)O4(z12/2)]3+perm, } 
(3.28) 

Whether (3.28) can be decomposed as a sum over "parafermionic sectors" 
similar to (3.26), (3.27) is unclear. 

4. Most of the correlation functions must be periodic, however, 
which is not the case for (3.20), even for E, M integers, because of the 
twisted sector contribution. To represent the energy operator (discussed in 
Section 2), one must thus consider cos 2q) instead of e 2i~. The distinction 
between these two possibilities has no meaning on the plane, but becomes 
relevant on the torus. We write, for instance, 

2 (cos Eq)( 1 ) cos Eep(2) ) (1/2,0) 

0',(0, z/2) e2/g t 02(Z12 , Z'/2)EX/g+ 01 ( Z12 , ' C /2  ) Ea/g} 

- -  02(0 , ~/2) ( 1 ~  r/2) 02(2'12 , */2) (3.29) 

This expression corresponds to giving a meaning to all the terms in the 
contraction using Wick's theorem, even those for which the electric 
neutrality is broken, which is possible since there is no zero mode in a 
twisted sector, as we discuss later. Using (3.9) and (3.18), one has 

2(cos E~p(1) cos Eq~(2)) 

 m_2z q 
= 01(z12) [2 /'1 2 \275/  e x p  ~ g  z~ / 

mm' E T7 "~ I "C I 

+ 
IO~(O)1 IO~(o) o4(o)1 =~/~ 

E 03( )04(2)2 'J+perm} 
(3.30) 
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and E =  2 gives the energy correlation function. In the same way E =  1 
corresponds to the polarization operator, and also, at the Z4 point, to the 
operator o2 in the notation of Ref. 16. 

5. There is no zero mode in a twisted sector, and it is thus possible to 
give a (renormalized) meaning to ((~92) (:eft) # (00), which diverges 
logarithmically. Introducing a mass term m2~02 in (2.6), following a zeta 
regularization and then letting m go to zero, we find (~3) 

(oiE~,, = e x p ( _  1 2 2 (3.31a) /(0,172) yE ( ( / 9 ) ( 0 , 1 / 2 ) )  = [�89 E272g 

and similar results obtained by modular transformations 

oiEr \ /(1/2.0) = [-�89 104(0)12] E2/2g (3.31b) 

( oiE~p \ ~. / '(1/2,1/2) = [17~103(0)12] E2/2g ( 3 . 3 1 C )  

The modular dependence in (3.31) is expected to be universal, unlike the 
numerical factors, which depend on the regularization. From (3.31) we 
deduce, for instance, the finite-size effects for the mean value of the energy 
operator 

(;)2/g ~ 
( e )  = Jr/I 10~(0)l 4/g-' (3.32) 

and at the decoupling point g = 2 

(~ )  =2re 
Z4=210=(0)1 (3.33) 

a result which agrees with asymptotic analysis of the exact (lattice) solution 
of the Ising model (26) as well as with direct calculations involving 
fermions (13) (the energy being represented by 0~  in the latter case) and 
justifies the choice of numerical constants in (3.31). Using the same iden- 
tities as before, one can check (14) that for E =  2, g = 2 

2(cos  2q)(1) cos 2~0(2)) = (O~(1)  0 + ~  +(2))(1)+ ((e)(1))2 (3.34) 

where the fermionic propagator  is given by (3.25). The additional term 
comes from the fact that cos 2(p represents the sum of the energies of the 
two independent Ising models and thus 

2(cos  2qo cos 2~o) = 1 / 2 ( ( g  I + / ; 2 ) ( g l  "}- g 2 ) )  = ( / ; / ~ )  "1"- ( , e ) 2  

We can also give a meaning to isolated vortices in a twisted sector, 
since antiperiodic boundary conditions now allow a frustration line 
(starting at an isolated vortex) to close onto itself (Fig. 6). Since the duality 

822/50/3-4-2 
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Fig. 6. 

I*Z 

In a twisted sector one can give a meaning to an isolated vortex, since antiperiodicity 
(along ~o' here) allows a frustration line to close onto itself. 

for the Gaussian model  leaves a twisted sector unchanged,  their mean value 
is readily calculated as 

( OM )(~,~)(g) = (e 'M~~ )~,~)(1/g) (3.35) 

It is nevertheless instructive to rederive this result directly. We con- 
sider, for instance, (c~fl)= (�89 0). To take into account  the presence of  an 
isolated vortex at, say, z = 0, we introduce a real classical field such that  

Due to (27) 

one has 

M 81(0) 84(z ) 
O=q) d = - i  (3.36) 

2 84(0) O,(z) 

84(Z) 84(0)' r 81(Z) f dzo--11~)-O-~l~ (3.37) 

,=[ oltz, ] 
~ool = ~ log 82(z) 83(0 ) "~- 02(0 ) 83(Z ) -1- CC (3.38) 

(Ocl satisfies the boundary  condit ions q)cl(Z+ 1 ) = - ( 0 o l ( z ) ,  ( o c l ( z + z ) =  
(Ocl(Z), and presents the desired discontinuity a round  z = 0, since 

f~ OzqO~ dz + c3eq) d d5 = 2~M (3.39) 
surrounding 0 

by simple application of the residue theorem or (3.37). We thus find the 
weight of an isolated vortex to be formally 

 340, 
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As expected, the integral in the exponential diverges logarithmically. A 
regularized value of such integrals was obtained in Ref. 13 by a rather 
indirect procedure. Adding a mass term to the Ising action, we have 
calculated the partition function in each fermionic sector with a zeta 
regularization, obtaining 

Z~(m)=Z~(rn=O){1-A~zm21og[�89 (3.41) 

(A is the area of the torus). The m 2 term is in agreement with the lattice 
calculations for the specific heat in Ref. 26; on the other hand, it is given by 
the integral over the torus of the modulus square of the fermionic 
propagator, i.e., precisely due to (3.27), the integral in (3.40). Thus, a finite 
renormalized value is 

f lO4(z) 2d=x=_2rc 04(0) 2 Tg TI01(Z) ~ log\2 104(0)12] (3.42) 

and 
(OM) ~1/2,o) = [�89 104(0)[ 2] gM2/2 (3.43) 

in agreement with (3.35). Finally, for a more general O~M operator we find, 
suppressing as usual the logarithmic divergence of ~Pd as z ~ 0, 

( O EM ) (1/2,0) = [ I~02( o ) ]hEME cc ]~EM (3.44) 

and similar results in the other sectors obtained by modular transfor- 
mations. 

6. So far we have discussed the two-point functions only, but the 
same methods can be applied to the calculation of multipoint correlators 
without any further difficulty. For a collection of operators 
OE~Ml(1)...OuoMo(n) such that Z E ~ = Y ' . M i = 0 ,  the classical field 
analogous to (3.1) reads 

q~ol= ~ Mi[ ImlogOi ( z - z i ) - (2rc / zOImzRez i ]  (3.45) 
i=1 

and with the use of Wick's theorem one finds 

( o~iM~(1).., o~~176 )pp 
01 (zjk) Ejr-k/g + gmMk 

=lq 
j<k 

~z Ej Im z j -  e M j  Re zj + 2i F, EjMk Im log 01(zjk)~ xexp ~ 01(0) j 
j<k 

[ ( [0~(zJ~)] 2a'~ [cc] 2~a~ exp - ~  6jzj + dj2j (3.46) 
j<k j 
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where 3j = CSL~Mj, while 

( O EtMl( l ) " " " O EnMn(n) >mm' 

[ ( = (Os M,(n))ppeXp 2~zg 1/2 m ' - - m f  
"f I 

)1 X E (SJZJ -] aJ~J j "rl j 

In the twisted sector (cq3)= (lO), we have also 

(3.47) 

Thus 

(Pd = 2 M~ Im log F 01((z - z~)/2, z/2)] (3.48) 
i [_02((z - z,)/2, , /2)J 

( OelM~(1 )... Oe, Mo(n) ) 11/2,0) 

F2Ol(zsk/2, r/2) 02(0, z/2)] 26'& 
= H 1 _ ' ~  ,['~ 0tl(0, ~--'~J [CC] 25jdk (3.49) 

j < k  

and similar results obtained by modular transformations. Note that the 
global normalization of these n-point functions, which is usually defined 
recursively (14} by short-distance expansions, was here very easy to write 
due to (19) 

0 ela< ( 1 ) 0 e2M2(2) ~"12'726162 '~2~-1~-2/'}"12 ~EI+E2,MI+ M2(1) (3.50) 

since 

h< + s + ~42 - h E l M 1  - -  h E z M 2  = 261 62 

4. T W I S T  O P E R A T O R  C O R R E L A T I O N  F U N C T I O N S  

As explained in the introduction, there are interesting physical quan- 
tities, such as the spin, which are not described by operators of the 
preceding OEM type, but instead by twist operators, which create a branch 
point singularity with change of sign of the field cp. Their correlation 
functions are technically more difficult to obtain, and we shall generalize in 
the following the methods proposed in Ref. 18 for the corresponding 
problem in the plane. A similar approach has also been used for the 
calculation of Ising spin correlations in Refs. 28 and 14. 

1. We first consider the two-point function in the doubly periodic 
sector for the basic twist field, which obeys {18) 

c~z~0(z) a(zl, Zl)~ ( z - z 1 )  1/2z(zl, z l )  (4.1) 
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(here r is another "excited" twist field) and, as proposed in Ref. 18, we 
introduce the auxiliary function 

G(Z, W, Zl, Zl, Z2, Z2) ~-" 
< --g 0~q)(z) c3w q~(w) ~(1) r~(2) > 

<a(1) a(2)> 
(4.2) 

which can be completely determined using local monodromy and 
consistency requirements. Indeed, G must be doubly periodic and analytic 
in the z, w variables and present the short-distance behaviors 

, (  , )  
G (z_zi)l/2 resp~(w_zi)l/2: as z(respw)~zi  

G_ 
1 

W, 2~ t- regular terms as z -~ w 
2(z 

(4.3) 

A natural candidate is then 

G(O,=[ G(0)]2f, Fol(z-z~)G(w-z2)]'/2 
201(z- w)J ~ L 0 1 ( z - z 2 ) ~ J  

FOl(z--W+ Z12/4] 2 ~ Z2" ~ 
XL CIG-7  j+Zl J (4.4) 

A given determination of the square roots in the 0 plane is chosen, which 
translates into a cut relating z~ to z 2 in the z plane, and it can be checked 
that G (~ is periodic. However, (4.4) is not the only possible choice. If we 
introduce the auxiliary function 

01(z-  (z~ + z~)/2) 
g21(z, zl, z2) -  [01(z-z~) 01(z-z2)] 1/2 (4.5) 

it is clear that 

G = G(~ 2(1, 2) ~ ( z )  f~l(w) (4.6) 

where 2 is an arbitrary function, also satisfies the local conditions (4.3). 
Conversely, if two possible functions G (1) and G (2) are given, the difference 
G (1)-  G (2) is regular as z ~ w. Forming the ratio (G ~l~- G(2))/f2~(z)(21(w ) 
then removes the branch point singularities, and leaves an analytic, doubly 
periodic function in z and w with at most a single pole in z(w) = (zl + z2)/2; 
it is thus a constant (27) and (4.6) is in fact the most general solution of the 
problem. In order to fix 2(1, 2), we can now use the fact that the field q, 
must be uniquely defined on the torus (as long as one remains on a given 
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sheet); this was called a global monodromy requirement in Ref. 18. We 
need 

H(~, w, Z1, Z1, ZI, Z2)= 
< - g  a~<p(s (3w~O(W) a(1) or(2) ) 

<a(1) ~(2)> 
(4.7) 

which obeys conditions similar to (4.3), but without singularity as z ~ w; 
we thus write 

H =  if(l, 2) (J,(~) f21(w ) (4.8) 

Then we must impose for any contour cg that does not cross the cut 

f ~z~o(z) dz + ~(~) dz= o 

which translates into 

f Gdz+Hds (4.9) 

Relation (4.9) is trivially true for any contractible ~ that does not surround 
Zl, z2, by application of residue theorem. If r surrounds the cut, it can be 
deformed to the parallelogram boundary of the torus, and the integral still 
vanishes, since G, H are periodic. We are thus left with noncontractible 
contours, which give the same integrals in a given homotopy class, i.e., 
cg = o~ or o9'. This gives two conditions, fixing in principle 2 and p. 

Suppose 2(1, 2) is known. Then we can take the limit z ~ w in (4.6), 
which, due to O4) 

V T(z) - g :  (c~z q~): := - ) i r n  w Lg 0z~p(z) aw~O(W) Jr 

gives 

(T(z) a(1) o-(2) ) 

<o(1),~(2)> 

l ] 
- w)2/J (4.10) 2(z 

16 (Z--Z1)--~I(Z--Z2) 

1 o',/~1~~1-oi )_ol ] 
5Wtq-)L~( z-z, o(Z-=~) 

0 2 1 ( 2  - -  (Z 1 + Z2)/2) 
+ 2(1, 2) t- terms regular as z --+ z~ 

O I ( Z  - -  Z1) O I ( Z  - -  Z2) 
(4.11) 
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Now, since T(z) is te generator of conformal transformations, it satisfies, as 
Z --+ Z 1 ,(6) 

T(z) a(Zl, zl) h~ ~?~b(zl, zl) - - -  ~- ~- terms regular as z --+ z l (4.12) 
(Z-Zl )  ~ ~ - ~ l  

Thus, letting z--+ z~ in (4.11), we obtain h,  = 1/16, as expected, ~181 and 

,0,1(4 ) c~,, l og (o i l  ) o(2) )pp = - g 0--7 (Z12) + 2 < 

+2(1, 2) 02(&2/2) (4.13) 
01(0) 0i(z~) 

To determine 2, we first multiply the integrals in (4.9) by 
02(z12/2)/[0'1(0) 01(zlz)Ol(w)] and choose for w the value W=Zl. Now 
consider the function 

02(z12/2) G(~ W=Zl, 1, 2)/[0'1(0) 01(z12) s = Zl)] 

It is analytic and doubly periodic as a function of z with ( z - z 1 )  172 and 
( z - z 1 )  3/2 singularities as z--+ zl. It can thus be written as a linear com- 
bination of fa~(z, Zl, z2) and Oz~f21(z, z~, z2), the coefficients of which are 
determined by studying the z--+ z~ behavior, 

02(z12/2) Gm)(z, w = zl, 1, 2) 

0'1(0 ) 01(Z12 ) ~r'~l(W = Z1) 

=10'1(z,2~ 1 
201 \  4 Jf21(Z'Zl'Z=)+ 2 az*f21(z'zl'z=) (4.14) 

Condition (4.9) then reads 

[[2(11 2) 0~(z12/2) 1 0' 1 

1 ,t # ( 1 , ~ ~ 2 )  02(z,2/2) ~ ,_ +'5~zl~'~l(Z, Zl,22) dz-} ~tLl~,Z, e l ,  e2) de  = 0 

(4.15) 
which is easily solved, giving 

c~ log(a(1) a(2))pp 

= ~zl log 011/8(Z12) 

( 4 . 1 6 )  
2 S,of21dz~o,~ld~--~,,f21dzSo,~1dZ 
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Introducing 

II(Ii) = s nl(Z, ZI, Z2) dZ (4.17) 

we find then 

1 1 
(a(1) a(2 ) )pp  oc kV t l]'-al'z12"11/8 [ I m ( i l I ' l ) ]  1/2 (4.18) 

The unknown term depending on $12 in (4.18) clearly must be 
[01(z,2)] 1/s. The normalization can be fixed by looking at zl ~ z 2  
behavior. Then s + 1, 11 ~ 1, 1'1 ~ r, and thus 

0t l (0)  1/4 ,171/2 

(a(1) a(2)>pp = ~ [im(111,1)]1/2 (4.19) 

It is not the modulus square of an analytic function, and it is not periodic. 

2. Now we consider a soliton sector with (m, m') characteristics, and 
we introduce a real classical field such that 

c3z ~0ci = A(1, 2) (21(z, zl, z2) (4.20) 

which satisfies the correct monodomy conditions around Zl, z2, and fix A 
by the condition 

fo,(o,') 0~ q~l dz + c~eq~cl dS= 2~m(2rcm') (4.21) 

which is readily solved, 

mi'l - m'i1 
A(1, 2 ) =  i~ im(/li,1 ) (4.22) 

Wrtiting q~ ~ ~0 + ~po~, where q9 is now periodic, the two contributions 
factorize as usual. The classical action reads, from (2.14). 

(mI'l - m'I1 )2 ~ 2 
~cl=Zcg [ im( i l I ] ) ]  2 Jr IOll dZx (4.23) 

Actually, this expression can be simplified. We can consider ~r 1~112 d2x in 
the simply connected region ~ whose boundary is the parallelogram 
representing the torus, related by a thin neck to a contour surrounding the 
cut (Fig. 7). In 7", there exists a function such that d f = O  1 dz. Using 
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Z I§ 

0 1 

Fig. 7. To evaluate the integral in (4.23), we consider the simply connected region i~ whose 
boundary is the usual parallelogram representing the torus related by a thin neck to a contour 
surrounding the cut. 

Green's theorem and integrating in a symmetric way along co, co+ 
(resp. co', co' + 1 ), we get 

frlf2't2 d 2 x = l  ~f21dz /x ~i dz 

1 

= Im([11'1) (4.24) 

the contribution of the contour surrounding the cut disappearing because, 
as explained above, the corresponding integral of ~21 vanishes. As zl --, z2, 
sg~ l becomes naturally ~g Imp-m'[2/~i, so the correctly normalized result 
takes the form 

0~(0) 1/4 1 Zrnm'~CT(1)~7(Z)}mm'=-]~12 ~ [Im([ l I ' l ) ]  1/2 

I 'mrl-m'I~t 2] 
xexp  -~g  im([11,1 ) (4.25) 

3. The results in the other sectors can then be obtained by translating 
z12 by 1, v, or 1 + ~, which wraps a twist line around the torus. The relevant 
contours of integration are still homotopic of co, co', passing possibly twice 
through the cut (Fig. 8). Along these contours there is no change of sign for 
the field (p, which can now present the usual discontinuities of 2gm, 2~m'. 
The distinction we made in the first section between Coulombic and 
twisted sectors becomes in fact irrelevant. All these sectors are related by 
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0 

Z 

/ l > //// _//2 
/ !  

/ 1 

l§ 

Fig. 8. The (aa) correlation function in the (cql) = (21-0) sector is obtained shifting z12 by r. 
Then one of the two contours used in the global monodromy requirement passes twice 
through the cut. 

the condition of periodicity of (~ra), which imposes to sum over the 
different translations of z12 with the same weight. Introducing 

and 

Ov(z - (zl + z2)/2) 
f2v(z, Zl, z2) [01(z-  zl) 01(z-  z2)] 1/2 (4.26) 

Iv(I" ) = f~, s v dz (4.27) 
(~o,) 

we get 

1 N~ 0](0) 1/4 
( a ( 1 ) ( r ( 2 ) ) - - / A T 2  1712 01(Z12 ) 

4 1 

• ~ [ im(/ i , ) ]1 /2  v=l m m ' E ]  v 

[mI'~-m'Iv[21 (4.28) 
exp -~rg Im(I~I'v) 

Note that <aa> depends on g in all sectors, which was not the case of the 
partition function, whose twisted contribution (2.19) was independent of g. 

It is interesting to consider the short-distance behavior of this 
expression. In the (e/~)= (1, 0) sector, for instance, one has, using (.37), 

1'4 = irc04(O)/O'~(O) + O(z12), z~2 --+ 0 (4.29) 

while 14 diverges logarithmically 

fo~ 04(z-  (zl + z2)/2) 
14= [04(Z_Zl ) 04(z-z2)] 1/2 

204(0) z12 204(0)1o [ ;  ] 
0](0-----) - l~  4 ~ g 02(0) + O(z12) (4.30) 
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in agreement with (3.42). Similar results are obtained in the other sectors, 
with the corresponding index v for the theta function. Then, performing a 
Poisson transformation over m' in (4.28), one finds 

(r~(1) 0(2)) = Z ~  T iz~2[l/4 + i lt/I v=2 10v(0)l 

• 2 0u(0) H [-cc]~e~ + --- (4.31) 
e m  e 2 Z  

where the dots denote terms with integer powers of z~2, ~12- The finite con- 
tribution in (4.31) reproduces the partition function (2.20). In particular, 
the correct relative normalization between Coulombic and twisted sectors, 
which looked rather artificial in Section 2, is reproduced by the condition 
of periodicity for (~ra). The Z12zI2h -~ terms in (4.31) correspond to Oe,- type 
operators appearing in the short-distance expansion of aa. Identifying 
[�89 ~ as (Oem), (3.44), we can read the structure constants 

G~,oe~ = 1/4~% em ~ 22~ (4.32) 

in agreement with the results of Refs. 17 and 18. 
It is easy to verify using Poisson transformation that (4.28) presents 

the duality invariance 

(o(1) a ( 2 ) ) ( g ) =  (~r(1) a(2))(1/g) (4.33) 

expected from (2.24), (2.25). 
At the decoupling point g = 2 ,  ( a a )  must reproduce the Ising spin 

correlation function calculated in Ref. 14, 

(S(1) S(2) ) ( I )=  Oi(O) 1/424=110~(z12/2)1 
Ot(z~2) ~4]-f-~2 ~ (4.34) 

Similarly, for g =  1 we recover the X Y model at the Kosterlitz- 
Thouless point, which is also described by a Coulombic partition function 
through the identity (8'~~ 

zAT(g = 1) = Z~(g = 4) = Z xY 

The spin correlation function is then simply obtained by considering O~,o in 
the model without twists, 

1 2  0](0) 1/4 (7~ 2 ) 
(S(1)S(2))~xY)-ZX~v~/21~ll~ 01(z12) exp ~-~iIm Z12 

f~ - 4 g  ,m ' -mrl  2 Im[(m'--mr)  za2]'( 
E t- 2~ X exp 

r a m '  TJ I 72I 

(4.34bis) 
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and this should equal (4.28) for g = 1. We discuss these identifications in 
Section 5. 

Finally, let us note that excited twist correlators can be obtained from 
(4.1) by taking the limits z ~ z l ,  w--,z2 in G, (4.6). 

4. We can of course perform the same calculations for the 2n-point 
functions. We first consider the Coulombic sector and calculate the 
quantum part of the correlator for which the field presents n branch cuts 
~0--. -q~ and is otherwise single-valued. We introduce, as in (4.2), 

< - g  c3z q~(z ) ~3~ qg(w) a (1) . . .  ~(2n) > 
G(z, w, 1 ..... 2 n ) -  (4.35) 

( a (1 ) . . . a (2n ) )  

with the monodromy constraints (4.3). The natural candidate generalizing 
(4.4) reads 

1 'F 

+ permutations} (4.36) 

On the other hand, the role of 01,  (4.5), is now played by a set of n 
independent functions, a convenient choice of which is 

~'~]i) = O1 [ Z  - -  Z i ~- 1 2 7  = I(Zj __ Z j +  n) ]  Y I j =  1;jr  O I ( Z  - -  Z j )  
[[i~= ~ Ol(Z_ zi)] ~/2 (4.37) 

One proves easily that the most general slution for G is 

G = G(~ ~ 2(~ 2n) (2~i)(z) s (4.38) 
i , j= 1 

For H defined by 

H(2, w, 1 ..... 2n) 

= ( - g  ~q~(~) c3w~p(w ) a (1) . - ,  a (Zn) ) / (a (1  ) .- .  a(2n) ) (4.39) 

one has also 

H =  ~ #(~J)(1,..., 2n) ~]o(s f2~J)(w) (4.40) 
i , j= 1 



Corre la t ion  Funct ions on a Torus 503 

The constants 2, # are then determined by the global monodromy 
requirements (4.9). Here one has 'to integrate over 2n contours, which 
separate into the 2 n - 2  one considered in Ref. 18 and in Section 2 for 
calculations in the plane plus the two generators co, co' (an example for 
n = 2 is given in Fig. 9). In the following we use the index e = 1 ..... 2n for 
designating all these contours (r co, cg2, = co'), and we introduce the 
matrix 

H]~") = I ~2~')(z) dz, H~ ~,i+") = o~f ~"(~) d5 (4.41) 

Then, one finds, after long, but straightforward algebra, 

(o(1)-- .  a(2n))qu 

01(0) 1/4 
~ f c t ( ~ )  

0 "=111 
i< j  

5 olfr , , , , 1  1 
X 11 IOl(Zkl)l \__z2' ' 2'+"1/ Idet Hll  l/2 (4.42) 

k , l =  1 i 1 
k < l  

where det H 1 is the determinant of the matrix (4.41). This result must in 
fact be independent of the choice of basis in (4.37). 

We consider now the classical part of the correlator. In a soliton sec- 
tor, (Pd presents the usual discontinuities of 2rtm, 2~m' along co, co' plus 
others also multiples of 2rt along the 2n - 2 additional contours (Section 2). 
One has, analogous to (4.20), 

~z~Pcl = ~ A{~g2~)(z) (4.43) 
i=I  

( 
Fig. 9. The set of four contours used in the calculation of (or(l) a(2) a(3) a(4)). 
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subject to 

f O=(P~I dz + 3e(o~i d2 = 2rcm~ (4.44) 

which is solved by (A, _~)= H?~(m). The classical action thus reads 

i , j =  1 

=4~g ~ mam a ~ (II~l)(i~)(H;l)Ua) frO(~)o(J)~ ~ dZx (4.45) 
o, f l  = i i , j  = 1 

Finally one gets results in the twisted sectors by tran'slating z 1 by the 
appropriate quantity, and the undetermined function in (4.42) can be 
obtained in principle in a recurrent way by short-distance expansions. Sum- 
ming over {ms} e Z gives the 2n spin function ($1 . . .  S2n). As explained in 
Section 2, one also can get mixed correlators involving S and t spins by 
adding ( - 1 )  m= factors for certain contours, exactly as in the plane. (~7'18) 
The corresponding expressions are, however, rather complicated. 

5. TWIST  CORRELATORS: RELATION TO THE 
A P P R O A C H  USING COVERING R I E M A N N  SURFACES 

Twist correlators also have been calculated recently by a different 
approach, using covering Riemann surfaces. We discuss the compatibility 
of the results, restricting ourselves for simplicity to the two-point function. 
In what follows it will be useful to change slightly the notation for theta 
functions, introducing 

O I ; ]  (z, z)= ~ expEixr(n + a)2 + 2irc(n + a)(z + b)] (5.1) 
n ~  

so that 

8 =03, 0 =02, 8 0 =84, 8 =8 t  

We will also denote (2v, Iv, I'v by t2~B, l~a, I'~a, where c~fl are the 
corresponding indices characterizing boundary conditions for (o. 
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The partition function with two twist insertions [the cut being 
contractible, as in (4.25)] was evaluated in Ref. 21 as (for a surface 27 of 
genus G = 1, i.e., a torus, which is the case of interest here) 

Z 0 01(0, T) 1/4 
ZrEa(1)  0"(2)3 =-~- (~'I) 1/2 01(Z12 ' .~) 

• o[Ol(z,  Zc, LoJ\2 ,r) 0[00] (0, r) (imH)l/2 

o[Oo] x (0, H) (5.2) 

Zo is the partition function of the periodic free field (2.131. In the general 
case H is the period matrix of Prym differentials Wi of the surface L" with 
two branch points. These are differentials holomorphic everywhere except 
at the two points, where they behave as ~z -1/2, and their number is 
known {211 to be the genus G orS .  In our case G =  1, W =  f2oo(Z) dz/Ioo and 
H is a number, H- -  I'oo/Ioo. On the other hand, Zd is given by 

Im'-mHI2] (5.3t 
Z d =  ~. exp - ~ g  I m H  J mm' ~ 

We thus see that (5.2) reproduces the v = 1 term in (4.28), provided 

~Ol(zl2 "g)0 [~] (0,"()/02 [00](0, I~)0~= 1 
0 L 0 j \  2 ' IooJ T~ (5.4) 

From (5.2) we deduce the partition functions where the twist line 
wraps around the torus by translating z12 of the appropriate quantity, and 
thus, by comparing with (4.281, relations analogous to (5.4) follow 

,., ,,.,, 

One can check (5.4), (5.5) at first order in zx2, but I have not been 
able to demonstrate these formulas by a more direct approach, nor find 
them in the mathematical literature. If one accepts them nevertheless, one 
can recover some interesting results. 

It can first be established that 

0 [; -j- ])l(Zl2 1~)0 []Y(~] (0, T)/O 2 ~])l(o, /t~fl~ 
+ a J \  2 ' L a J \  I,~J 
is independent ofT, 6 �9 {0, �89 (5.6) 
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as a limiting case of Schottky's relations ~29) after pinching a cycle of the 
covering surface. ~2u Suppose now g = 2. Then, by identity (4.19) of Ref. 14 
we have 

1 [- , , 2 
[im(i, /i~)]l/2 ~ e x p L - 2 ~ z l m - m I ~ / I ~ l  ] 

,.m'.z Im(I'~a/I~) J 

, . ,  

Using (5.5), (5.6), we get 

1 G(o) 
(a(1) a(2)) --4zAT ir/ i 2 01(Z12 ) 

1/4 

i.e., since Z AT= (ZI) 2, (2.22), 

( a ( 1 ) a ( 2 ) ) ( g = 2 ) =  0~(0)1/4 
01(Z12) 

Z ol/3+ 
(5.8) 

Fqfz" 2 0 
0 L f l j \ 2 '  ) / ~ e  [ : ] ( 0 ,  

(5.9) 
reproducing indeed ( S( 1 ) S(2 ) ) ('), (4.34). 

On the other hand, we have also doubling formulas at our disposal, 
giving (29) 

0 Lj~j\"T,F0~(Z12 ~)0 [~] (0, ~)/0 2 [00](0, I:/~i~flj 

=0217fl'/2](~,2z)/02[?O](0,2]~') (5.10) 
lap J 

For g = 1 one can prove with identity (4.19) of Ref. 14 that 

1 ~ expI_  Im'-mI'~,~/I~,[21 
[-Im (I',~/I~) ] 1/2 m,,,' ~ ~ Im (I'~p/I~) 

= ~  Of:I( 0'21:'I 'I.,/, (5.11) 
Using (5.10), (5.11), we get 

1 0](0) 1/4 117+~/2]{zx2 2 
(rr(1)rr(2))(g=l)=zzAT[rl[ 2 01(Z12) ~y I I-O fl j \ -~ - ,Z r )  

(5.12) 
which can indeed be identified with (4.34bis), using same method as in 
Ref. 14. 
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6. CONCLUSION 

I have shown how the correlation functions of the Ashkin-Teller 
model on a torus can be obtained from its free field mapping. I have mainly 
discussed the case of electromagneic or twist operators, which imply dif- 
ferent interesting technical approaches and have various applications. One 
could as well consider mixed correlators, which are obtained simply by 
combining the steps of Sections 3 and 4. I have discussed the compatibility 
of my formulas for twist correlation functions with those derived 
recently (29) by a different approach using covering Riemann surfaces, and 
shown that it implies interesting identities. 

Note  Added.  At the final stage of this work I received a preprint 
by J. Attick, L. Dixon, A. Griffin, and D. Nemeschansky where results of 
the same nature as those of Section 4 are obtained in the context of string 
theory on ZN orbifolds. 
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